An Expansion Formula for the Askey-Wilson Function
نویسنده
چکیده
The Askey-Wilson function transform is a q-analogue of the Jacobi function transform with kernel given by an explicit non-polynomial eigenfunction of the Askey-Wilson second order q-difference operator. The kernel is called the Askey-Wilson function. In this paper an explicit expansion formula for the Askey-Wilson function in terms of Askey-Wilson polynomials is proven. With this expansion formula at hand, the image under the Askey-Wilson function transform of an Askey-Wilson polynomial multiplied by an analogue of the Gaussian is computed explicitly. As a special case of these formulas a q-analogue (in one variable) of the Macdonald-Mehta integral is obtained, for which also two alternative, direct proofs are presented.
منابع مشابه
Expansions in the Askey–Wilson Polynomials
We give a general expansion formula of functions in the Askey–Wilson polynomials and using the Askey–Wilson orthogonality we evaluate several integrals. Moreover we give a general expansion formula of functions in polynomials of Askey–Wilson type, which are not necessarily orthogonal. Limiting cases give expansions in little and big q-Jacobi type polynomials. We also give a new generating funct...
متن کاملA second addition formula for continuous q-ultraspherical polynomials
This paper provides the details of Remark 5.4 in the author’s paper “Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group”, SIAM J. Math. Anal. 24 (1993), 795–813. In formula (5.9) of the 1993 paper a two-parameter class of Askey-Wilson polynomials was expanded as a finite Fourier series with a product of two 3phi2’s as Fourier coefficients. The proof given there use...
متن کامل2 00 0 the Askey - Wilson Function Transform
In this paper we present an explicit (rank one) function transform which contains several Jacobi-type function transforms and Hankel-type transforms as degenerate cases. The kernel of the transform, which is given explicitly in terms of basic hypergeometric series, thus generalizes the Jacobi function as well as the Bessel function. The kernel is named the Askey-Wilson function, since it provid...
متن کاملFormulae for Askey-wilson Moments and Enumeration of Staircase Tableaux
We explain how the moments of the (weight function of the) Askey Wilson polynomials are related to the enumeration of the staircase tableaux introduced by the first and fourth authors [11, 12]. This gives us a direct combinatorial formula for these moments, which is related to, but more elegant than the formula given in [11]. Then we use techniques developed by Ismail and the third author to gi...
متن کاملTaylor Series for the Askey-wilson Operator and Classical Summation Formulas
Abstract. An analogue of Taylor’s formula, which arises by substituting the classical derivative by a divided difference operator of Askey-Wilson type, is developed here. We study the convergence of the associated Taylor series. Our results complement a recent work by Ismail and Stanton. Quite surprisingly, in some cases the Taylor polynomials converge to a function which differs from the origi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 114 شماره
صفحات -
تاریخ انتشار 2002